Energy-Conservation Error Due to Use of Green–Naghdi Objective Stress Rate in Commercial Finite-Element Codes and Its Compensation

نویسندگان

  • Zdeňek P. Bažant
  • Jan Vorel
چکیده

The objective stress rates used in most commercial finite element programs are the Jaumann rate of Kirchhoff stress, Jaumann rates of Cauchy stress, or Green–Naghdi rate. The last two were long ago shown not to be associated by work with any finite strain tensor, and the first has often been combined with tangential moduli not associated by work. The error in energy conservation was thought to be negligible, but recently, several papers presented examples of structures with high volume compressibility or a high degree of orthotropy in which the use of commercial software with the Jaumann rate of Cauchy or Kirchhoff stress leads to major errors in energy conservation, on the order of 25–100%. The present paper focuses on the Green–Naghdi rate, which is used in the explicit nonlinear algorithms of commercial software, e.g., in subroutine VUMAT of ABAQUS. This rate can also lead to major violations of energy conservation (or work conjugacy)—not only because of high compressibility or pronounced orthotropy but also because of large material rotations. This fact is first demonstrated analytically. Then an example of a notched steel cylinder made of steel and undergoing compression with the formation of a plastic shear band is simulated numerically by subroutine VUMAT in ABAQUS. It is found that the energy conservation error of the Green–Naghdi rate exceeds 5% or 30% when the specimen shortens by 26% or 38%, respectively. Revisions in commercial software are needed but, even in their absence, correct results can be obtained with the existing software. To this end, the appropriate transformation of tangential moduli, to be implemented in the user’s material subroutine, is derived. [DOI: 10.1115/1.4024411]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates

The paper briefly summarizes the theoretical derivation of the objective stress rates that are work-conjugate to various finite strain tensors, and then briefly reviews several practical examples demonstrating large errors that can be used by energy inconsistent stress rates. It is concluded that the software makers should switch to the Truesdell objective stress rate, which is work-conjugate t...

متن کامل

Efficiency of Anti-Hourglassing Approaches in Finite Element Method (TECHNICAL NOTE)

one of the simplest numerical integration method which provides a large saving in computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four different an...

متن کامل

Multi-objective design optimization for crash safety of a vehicle with a viscoelastic body and wide tapered multi-cell energy absorber using DOE method

Due to the extensive use of cars and progresses in the vehicular industries, it has become necessary to design vehicles with higher levels of safety standards. Development of the computer aided design and analysis techniques has enabled employing well-developed commercial finite-element-based crash simulation computer codes, in recent years. The present study is an attempt to optimize behavi...

متن کامل

A Discontinuous Galerkin Method for the Naghdi Shell Model

Abstract. We propose a mixed discontinuous Galerkin method for the bending problem of Naghdi shell, and present an analysis for its accuracy. The error estimate shows that when components of the curvature tensor and Christoffel symbols are piecewise linear functions, the finite element method has the optimal order of accuracy, which is uniform with respect to the shell thickness. Generally, the...

متن کامل

The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method

The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013